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The Enskog repeated ring equations (ERRE) for tagged molecule motion are 
derived from the BBGKY hierarchy. The hierarchical deviation demonstrates 
the problem associated with using naive truncations for complex fluid systems. 
A moment-variational solution is suggested for the ERRE. The moment- 
variational method is applied to the ERRE for the two- and three-dimensional 
overlapping Lorentz gas (LG). Both self-consistent and non-self-consistent 
equations for the diffusion constant are solved. The results compare favorably 
with previous calculations and molecular dynamics (MD). 
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1. I N T R O D U C T I O N  

A major focus of kinetic theory is to achieve a microscopic understanding 
of transport processes in condensed phases (see, e.g., Ref. 1). While 
progress has been made during the last 20 years in this direction, it is still 
not possible to predict most transport coefficients via kinetic theory. 
Neither Boltzmann theory, which ignores all correlations, nor Enskog (or 
modified Enskog) theory, which retains static (equilibrium) correlations, 
yet neglects dynamic correlations, provides a comprehensive description of 
physical processes in dense fluids. (21 These theories are strictly applicable to 
dilute or moderately dense gases or to the initial time behavior in 
condensed phases. It is reasonable to ignore many-body correlaltions in 
dilute fluids and at short times in dense fluids, before the correlations have 
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built up. Success for any other regime in dense fluids cannot generally be 
expected. 

The simplest theory that incorporates many-body dynamic 
correlations ~3) is the repeated ring (RR) theoryJ 4) It includes pair dynamic 
correlations and ignores static correlations, in contrast to Enskog theory. 
The RR theory predicts an R -1 (R is the radius of the tagged particle) 
dependence of the single-particle diffusion constant characteristic of 
Stokes'-law hydrodynamics, ~5-7) whereas Enskog theory predicts an R -2 
dependence. This is but one example of the necessity of incorporating 
many-body correlations to obtain the correct physics in dense fluids. Other 
phenomena that can be treated only with the inclusion of dynamic 
correlations are the long-time tails (s'9) in the Green-Kubo expressions and 
the vanishing of the diffusion constant at the percolation density for the 
overlapping Lorentz gas. ~1w~2) 

The RR theory treats only part of the problem, for static correlations 
must also be considered. Sung and Dahler ~13) and Masters and Keyes ~14) 
considered the problem of calculating the behavior of a tagged spherical 
particle in an atomic fluid. The equations they derived account for tagged- 
particle-bath-particle dynamical correlations, while retaining the static 
structure of the fluid. Their equations represent the specific form of the 
Enskog repeated ring equations (ERRE) (the general form to be derived 
below) restricted to the calculation of the velocity correlation function 
(VCF) of a spherical particle in an atomic bath. The ERRE were shown to 
predict Stokes'-law behavior and long time tails ~2) in the VCF. 

Masters and Keyes ~5'~6) (MK), using Cercignani's integral variational 
principle ~17'1s) (IVP) generalized to the RR equations for the LG, were able 
to calculate the self-diffusion constant D over the full range of densities. 
Furthermore, utilizing a self-consistent form of the RR equations ~~ 
(denoted SCRRE), they obtained quantitatively accurate values for the 
diffusion constant, including the vanishing of D at a critical density of 
scatterers. The IVP has not been demonstrated for more complex fluid 
systems, in particular, those with nonoverlapping scatterers and nontrivial 
static structure. 

The purpose of this work is twofold. First, we present a derivation of 
the general ERRE for tagged molecule motion. The derivation proceeds 
from the BBGKY hierarchy appropriate to (nonspherical) rigid ovaloids. 
To the best of our knowledge, this is the first hierarchical derivation of 
more complex RR equations. The derivation is enlightening, in that it 
clearly demonstrates the problem associated with naively using truncations 
from dilute gas kinetic theory. Consistency conditions on the reduced 
distribution functions serve as a guide in choosing the correct truncation. 
Once the appropriate truncation is made, the derivation is straightforward. 
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We believe that this discussion may serve as a guide in deriving more 
complex RR equations to study collective particle properties of condensed 
phases. 

Second, we suggest an approach toward obtaining numerical solutions 
based upon a new differential variational principle (DVP) applicable to the 
full ERRE, retaining their complex static structure. This has not proved 
possible with the IVP. This DVP was established by Cercignani ~ for the 
Boltzmann equation. A calculation of the self-diffusion constant D for the 
overlapping LG is presented utilizing the DVP. The results for D, for two- 
and three-dimensional systems, are compared with both molecular 
dynamics (MD) (19'2~ and accurate numerical results. (14~16) This example is 
meant to serve as a guide in implementing the variational procedure and to 
estimate its value in reproducing known results. 

We have completed calculations of the full VCF for the LG using the 
DVP. The VCF calculations represent new results unobtainable by other 
methods. These results will be reported in a subsequent paper, further 
demonstrating the utility of this new DVP. 

2. ENSKOG REPEATED RING E Q U A T I O N S  

We now derive the Enskog repeated ring equations. The starting point 
is the pseudo-Liouville equation for the N-molecule distortion 

6PN = 6P (1) Ot 

Here ~(N) is the distortion from equilibrium of the full N-molecule 
distribution function 

ff'(N)(xN ' --(N) N t) = F~q ( x )  + 3PN)(x x, t) (2) 

w h e r e  -(N) N Feq (x)  is the absolute equilibrium distribution function and 
x ~= (XlX2... Xs), xj denoting the phase point of molecule j. Also in Eq. (1) 
are the N-molecule pseudo-Liouville operator (2~,22) and its adjoint, defined 
by 

iL(+_N)=E iL}')+ E ~.~) (3a) 
j j ,k  

iL~+_ N)*= - -E iL~l)--2 T)~ )* (3b) 
j j,k 

Here iL~ 1) is the single-molecule Liouvil!e operator for particle j, written in 
terms of the single-molecule kinetic energy Kj, 

iL~l)a = i{Kj, a} (4) 
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with {A, B} denoting the Poisson bracked of A with B, and Tj(f ) represents 
the binary collision operator for molecules j and k. In Eq. (3b) we have 
used the result that L} 1) is self-adjoint. Explicitly, T}~) and 7}~)' are 

T ~ ' =  O(-4-]jk) ,~(ljk)I]jkl (bjk -- 1) (5a) 

)' = 5(tj ) { 0( _+ ij ) + 0( T- ij )} (Sb) 

where ljk represents the smallest distance between the surfaces of the convex 
ovaloids j and k. 3 Here ]jk is the time rate of change of ljk, and O(x) and 
5(x) denote the Heaviside and delta functions, respectively. The operator 
/~jk acts on the momenta, changing the pre- (post-) hit momenta to the 
post- (pre-) hit momenta. See Fig. 1 for a pictorial representation of the 
collision geometry. Equation (1) holds for molecules that interact via rigid 
impulsive forces. 

To proceed, we define the reduced distribution functions 

5iT(s) N! (N-- s)l f dx,+ 1 ' ' "  dXu OF(N) (6a) 

and note that these functions are interrelated, 

3j7(~) = 1 fdx~+~bjT(s+~) (6b) 
N - s  

These relations will serve as consistency conditions on the truncation 
schemes to be discussed. With the reduced distribution functions defined, 

3 When j and k overlap, ljk is defined as the maximum distance between the molecular surfaces 
defining the overlapping region. 

Fig. 1. Representation of a collisional configuration between two rigid ovaloids. The unit 
vectors ~1 and ~2 orient the molecules, 112 is the minimum distance between the molecular sur- 
faces, and ~ denotes the unit surface normal at the surface point nearest the collision partner. 
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the BBGKY hierarchy for ~f(s) is obtained from Eq. (1). The first few 
equations are 

?5 + iL~') 67(')(Xl, 0 = ax2 =,2 

N +  iL~ 1) + iL(2 ' ) -  Ti~)* 67(2)(x,, x2, t) 

= f dx 3 ( T ~ ) * +  T(+~23 )t]] ~ ? ( 3 ) ( X l ,  X 2 ,  X 3 ,  t) (7b) 

Because we consider molecules that interact impulsively, the distribution 
functions for this system vanish identically whenever l jk<0 (overlap 
condition) for any j and k. For later convenience, we choose to factor out 
of 3f(s) its discontinuous part and define 6f  (s) through the relation 

6f (s)= W ~') 6f  ~s) (8) 

where W ~') is zero if any ljk < 0 (j, k = 1,..., s) and is unity otherwise. The 
function 6f  ~') is a smooth function of the s-molecule phases. Inserting this 
relation into Eqs. (7a) and (7b), we obtain 

6f(1)(X1, t ) = f d x  2 T~-)* 6f(2)(x1, X2, t) (9a) 

6f(21(x i, x2 ' t)(iL]')-a- iL(1)~2 ! W(2),2 

W(2)[ O-- iL]l) + iL~')-  T(+ )*) t) -[- 12 k ( ~ l  ''[- ~ 1 2  ) ~ f ( 2 ) ( X ' '  X 2 '  

= f d x 3  W(3)(T(+)* + T(~)t)6f(3)(x,,x2, x3, ,3 (9b) 

Now, we utilize the following identities: 

iL 1) _a- iLO)~ W(2) ],2 3(112) W]~ ) (10) , ~ 2 ! 12 

T(+)*-- ],2 5(l,2) = T~s ) (11) 12 

in order to rewrite the hierarchy, 

(Lq-iL(i)~6f~')=fdx T<+)*6f~ , (12a) 
~ t  ' ) ~ ' 2  

+ iL 0) a- iL(1) _ T~(- ) .~/-(2) , ~ 2 u j  ,2  

f dx 3 I~(2)W(2)tT(+)* + T(+)*] Of(3) (12b) I, t l (  2 ) 
~--- vr ,2  ~ 13 " 23 t ~ 1 3  ~ 2 3  J 123 
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It is now necessary to truncate the hierarchy in order to obtain a 
manageable closed set of equations. 

Many truncations have been proposed. They all share a common 
feature, that of ignoring high-order dynamical correlations. For example, 
the Boltzmann ansatz is 

f(2)(x*, x*, t ) =  f(1)(x*, t)j~')(x~', t) (13) 

where the star denotes the precollisional state. The truncation assumes that 
precollisionally, the two colliding molecules are uncorrelated. However, no 
assumptions concerning the postcollisional form of f(2) are made. This 
distinction between the past (precollision) and future (postcollision) in the 
truncation introduces an irreversible evolution. We are not required to 
make an explicit distinction between the future and past in our truncation; 
it is implicit in Eq. (12), where the coupling of the ~f(n) term is to the 
precollisional part of 6 f  (~ + 1). 

If we were to proceed naively, we might propose a truncation of the 
form 

)7(1)(Xl, t ) : )7~1){ 1 -~- ~(Xl,  t)} 

J~(2)(X1, X2, t) =J~(2){1 -~-~(I)(x1, t)-~-~(2)(Xl, X2, t)} (14) 

?(3)(X1, X 2 X3, t ) =  7'(3)(1 +~b(')(xl, t)+~b(2)(xl, x2, t)--l-~(2)(x1 x3, t)} , aeq ~ 

However, this truncation does not satisfy the consistency conditions on the 
reduced distribution functions, Eq.(6b). For example, )7(3) integrates to 

)7(2)(Xl, x2, t ) +  [ 1 / ( N -  2)] f dx3 7(3) q~(2)(Xlaeq , X3, t) 

and not to f(2) as required. The consistency conditions are guaranteed if we 
write a general truncation in terms of the full N-body distribution 

f N 
J2~ 1 

+ . . .  + y~ z " r ( X l ,  xj~,..., xj,, t) 
J2,J3,...,Js ~ 1 

(15) 

where the reduced distribution functions are obtained from ~N) using 
Eq. (6a). Truncations of this form have been utilized by many workers and 
have been given a systematic justification in terms of a maximum entropy 
formalism. (23) 
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The ERRE are derived by setting s = 2 in Eq. (15). This choice leads to 
the following reduced distribution functions: 

t) =~1){1 t)} + f dx2 jT~)X(2)'(x~, x2, t) (16a) --}-~(1)'(X 1, 

fr x~, t ) -  ?'~)~ 1 --.-' eq v "{-X(1)'(X1, t) -'k Z(2)'(Xl, x2, t)} 

-]- f dx  3/(3)Z(2)'(X1, X3, t) (16b) 

At first, these forms appear odd. It is more convenient to work with 
a singlet distortion ;~") rather than a singlet distortion Z(I)'+ 
[~q)] ~ f dx 7(2)~,(21' since the singlet distortion determines the physical J 2 Jeq A , 
quantities we want to calculate. Thus, we define unprimed distortions 

Z < ' ) ( x l ,  t )  = Z") ' (  x ,  , t)+fdx2t~{l)G]2)Z(2)'(Xlaeq , x 2, t )  (17a) 

,~(2)(X1, X1, t ) =  Z(2)'(Xl, X2, t) (17b) 

where 
molecules 1, 2 ..... s. 

Our choice of singlet distortion implies a truncation of the form 

fi'(N) = F,(N){1-'{- X(I)(Xl, t ) - -  f dxjf{elq)(Xj) ~I!2)'ll(2)[vlj iv \~-1, x j ,  t) 

+ Z z/2/(x~, x~, t) 
j=2 

O~s) is a static equilibrium s-body distribution function for 1,2,...,s 

(18) 

and, further, leads to the reduced distribution functions 

•f(1)(X1, t) = f~l)(1) Z(1)(Xl, t) (19a) 

,~f~2)(xi, x2, t) 

= f~ ) (1 )  f~lq)(2) G~ ) {Z(1)(Xl, t ) +  Z(2)(Xl, x2, t) 

- fdx3 f :x ) (3)  W(2)G(a)'(2''x , , 3  ~3,~ , , x3, t)} 

+f(e~)(1) f~)(2) f dx  3 f~)(3) W~ 2) W(2)G(3)23 123z~'(2)tx, 1, x3, t) (19b) 
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6f(3)(x~, x2, x3, t) 

(1) 1 (1) 2 (1) 3 6 (3) {,~(I)(x1, t) + X(2)(XI, - ~ f e q (  ) f e q (  ) f e q (  ) 123 X2, t) 

+Z(2)(Xl,X3, t)--fdx4f~elq)(4) lM(2)H(2)v(2)t~'" 14 ~ 1 4 A  i ~ 1 ,  x 4 ,  t ) }  

+ f(l)fl ) f ( l ) (2  ~ f(1)(3] ( dx 4 f~1)(4 ) W~])W2~])W(2)c(4) ~,(2)t,, t) a e q  ~ xaeq  x ~aeq x x j  34 ~1234A ~A1, X4~ 

(19c) 

Again, the functions 6f t2) and 6f ~3) appear strange, while 6f ~1) seems 
appropriate. We have introduced a new definition here, not new physics. 
One could work with either set of Z's, but, With the primed set, the 
interesting quantity 6f ~1) is not given by g ~1)' alone. This point is essential 
in the construction of consistent truncations from Eq. (15). 

Inserting the reduced distribution functions of Eq. (19) into the 
BBGKY hierarchy of Eq. (12), utilizing the equilibrium form of the 
BBGKY hierarchy to eliminate the VG terms, and integrating by parts, we 
obtain the Enskog repeated ring equations. They are 

77 ~12:12 ) Z"/(  x,. t) 

= f dx r(1)~2~ W (~ So, ,r, + )* 
2 J e q  t ! 12 t 12 12 

f ~r(+)+], t) (20a) + dx3f(1)(3)[ Wt2)G(3)eq 23 123 -- G(2)~(2)-112 ~13 -I --13 J Z ( 2 ) ( X I '  X2 '  

= W~2) { T(-)G(:) + f dx3 rO)t3,rW(2)G(3) -G(:)G(2)I T~j)} 12 12 deq  t #L 23 123 13 12 d ~((1)(X1, t) 

(20b) 
where 

[~,2 (S~+iL~I)+iL(1) ) 

3 J e q ,  ] 131- 23 1 2 3 - - ~ 1 2 ~ 1 3 A  N+iL~'+iL~" P23 

f (1) W(2)W(2)G(3) rT(-)J- + P23)] - dx3 f~q (3) 13 23 123L 13 - -  T(2y)(1 
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- I dx3 f(~)(3) w(2)~,, 13 ( W(2)G(3)23 1 2 3  - -  v 1 2  ~ 1 3  ~(2)~(2) ~j T]~-)/323 

f dx dx r(1)~3~c(1)~4~ W(2)W(2)[ W (2) W (2) W(2)G (4) ['1/'(2)(7"(2)(7"(3) 
- -  4 J e q \  l J e q ' ~  1 13 14 34 23 24 1 2 3 4 - -  " '  3 4 ~ 1 2 ~ 1 3 4  

-- W ~2)G(2)G(3) ~ G(2)G(2)G~2)q T[z)/323 24 13 124 ~ 12 13 14 -I 

+ I dx3 dx4 f~)(3) f(~1)(4) bv(2)IzIz(2)w(2)r I~(2) w(2)(7~(4) " 13 " 14 " 34 k ' '  23 " 24  ~ 1 2 3 4  

__ ( ~ ( 2 ) ( ~ ( 3 )  ] / 3 4  3(134)/323 ~ 1 2  v 1 3 4 J  

__ Y ( - - ) ~ / 7 . ( 2 ) - L .  ~ d X rr(1)['l]l/l/(2)[m(2)l '~' .(3)_/'~.(2)G(2)]/~ l ' (  -12 L..12-j  3 . q , o , , , 1 3 ,  . . .123  13, 23j  (21) 

Here the /3jk are operators which permute the indices j and k. Equations 
(20) and (21) represent the most general RR equations for tagged molecule 
motion. They are not restricted to the analysis of a particular problem or 
initial condition. 

The form of the ERRE appropriate to the self-diffusion of a spherical 
particle in an atomic bath has been derived independently by Sung and 
Dahler (13) and Masters and Keyes. (14) Both derivations employ a Mori 
formalism, choosing as relevant variables the set 

6(v-v1) 6 ( r -  rl), 6 (v -  Vl) 6 ( r -  rl) ~ 6(vj-  v2) 6(r j - r2)  
j = 2  

The equations derived by Masters and Keyes are obtained from Eqs. (20) 
and (21) by substituting Z(1)(Xl, t = 0 ) =  v I as the initial condition on the 
singlet distortion, and utilizing the following explicit forms: 

xj ~ (ry, vj), iL}1) -~ vj �9 V~j 

lo.6(li j )  --, (vj - vi). ~ij 6(ro  - rrij) 

where rij = r j - r j  and a U is the collision radius of particles i and j. The 
equivalence of Eqs. (20) and (21) with the equations of Masters and Keyes 
for self-diffusion of a spherical particle serves as a check on the truncation 
of the BBGKY hierarchy proposed in this section. 

3. A V A R I A T I O N A L  SOLUTION 

A standard method for obtaining numerical results in kinetic theory is 
an expansion of the unknown quantities in a complete set of functions. In 
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practice, the utility of these moment expansions is lost if a large number of 
terms is required. It is known that moment solutions to kinetic equations 
involving only ;g(~) (e.g., Boltzmann or Enskog equations) converge rapidly. 
It is also known that a moment expansion of Z (2) required in RR theories 
suffers from prohibitively slow convergence324) Master and Keyes (15'16) 
have recently demonstrated an integral form of Cercignani's variational 
principle (IVP) applicable to the RR equations for the LG. This IVP yields 
what are believed to be highly accurate results. However, the Masters and 
Keyes method suffers from its inability to be generalized to more complex 
equations (for example, the ERRE). 

We suggest that a reasonable approach is one that expands Z ~) in a 
truncated set of moments and treats Z (2) within the framework of a 
variational principle. For the ERRE we will demonstrate a differential form 
of a kinetic variational principle (DVP) due to Cercignani. ~ 

The method is as follows: First expand Z ~) in a finite, orthonormal set 
of functions of momenta, denoted ~bj, j =  1, 2 ..... m: 

Z~ ~ aj~bj (22) 
j=l 

where the aj are expansion coefficients to be determined. The moments are 
assumed orthonormal under the Maxwellian weight function. Inserting this 
expansion into the first of the ERRE, Eq. (20), premultiplying with 
~ko(1) ~bk(1), where ~o is a Maxwellian normalized to unity, and integrating 
over the momenta, we obtain a set of moment equations for the unknown 
expansion coefficients: 

= f  dx I Oo(1) q~k(1) Z(1)(x1, t : 0 )  

--j~k {f dxm 00(1)q~k(1)iL~')(~s(l)- f dxl Oo(1)~bk(l)/~LE(1)~bs(1)} aj 

+ f dXl dx= @o(1) f(~1)(2) Wi~)Z(2)(Xl, x2, z) ~'i~)q~k(1) (23) 

Here z is the Laplace transform variable, Z(1)(x~, t = 0 )  is the initial 
condition, kite represents the Lorentz-Enskog operator 

RLE(i) f ( i )  = f dxjf(~l)(J) --,JG(?)T(+,s ; J,C(i), (24) 
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where i refers to the momenta of molecule i, and the operator ~'~) is 
defined by 

" ~  ) = ~(2)T(+ ) + ~ 1 2  12 .[dx3f (l)r ~, ! t. 23 123 - -  G(2)G(2)q12 13 ~ T~(+) (25) 

In deriving the expansion of Eq. (23), use of the adjoint relations satisfied 
by Tb -+) has been made. 

The problem now lies in the determination of ;/(2). Actually, we require 
not )/(2) itself, but the last term of the rhs of Eq. (23). The equation satisfied 
by X (2) is 

W~)~,4Z(2) (x  1, x 2 ,  z )  ---- W(2)'~(12 12 )'~'(1)( X Z ,  1, Z)  (26) 

Here both A and t are linear operators. Inserting the moment expansion of 
X (1) into Eq. (26), utilizing the definition of linear operators, we obtain 

W]22)jZ(2)= W]~)~ a+t~-)~bj(1) (27) 
j = l  

The function Z (z) can be similarly expanded 

x(2)(xi, "2, z )=  aj(z) x2, z) (28) 
j = l  

where the coefficients are identical to the expansion coefficients of )(1), and 
the functions q~2) satisfy the equations 

W(Z).d~ (2) W(2)t (-) ~bj(1) (29) 12 j = 12 12 

Variational principles suggest themselves when symmetric operators 
are involved. However, the operator A is not symmetric, i.e., 

( ~l.,~ I~ )  r (q~IA [g t )  (30) 

where 

if ( ~ 1 ~ )  = ~  dx~ dx 2 W~)g,o(1) ~o(2) ~ b  (31) 

and the quantity V is the system volume. Following Cercignani, we 
introduce the parity operator in velocity space R. Operating on the 
equations for ~b} 2) with/~, we get 

W ~ 2 ) / ~ A ~ ( 2 ) ( X l ,  x 2 ,  z )  = W(2) '~  ( 1 2  12 + ) k q ~ } l ) ( 1 )  ( 3 2 )  
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where the identity /~'1"(-)= "['(+)/~ was used. Now utilizing the properties 
/~T(-+) = T (-v-)/~ and freely changing the integration variables from {xi, xi } 
to {/~x~, Rxz}, whose Jacobian is unity, it is a straightforward, albeit 
tedious, exercise to demonstrate that the operator product  _ ~  [where r is 
defined in Eq. (21)] is symmetric, i.e., 

(33) 

The variational principle is presented by defining the functionals 

jjk((~(2) ) = (~j2)[ k d  i ~(2)) _ (~j(2) I ~-~-)R [~b(k 1) ) - (~(2) I "~-)R I~b} 1) ) 

(34) 

where ~}2) represents an arbitrary trial function. Assuming that the singlet 
moments  ~b} ~) have well-defined time-reversal eigenvalues (this can always 
be arranged), which we denote tj, the functional can be written 

(35) 

Allowing 6 ~  z) to denote the deviation of the trial function from the true 
solution to Eq. (29), it is easily demonstrated: (1) that the first variation of 
J j ~ ( ~ ) )  vanishes, and (2) that the stationary value is 

-~(2) t (+)  

Inserting ~}2)=q~j2)+645}2), where ~}2) is the solution of Eq. (29), into 
Jjk(~(z)), we get 

Jjk((b(2)) = Stat Jjk + 6J}~) + 6:J} 2) (36) 

where 

Stat Jjk = (q~}2)l RA Iq~ 2) ) - (q~}~)l k~(-)I~b~ 1) ) 

- (q~2) I R'[ "(- )I~,b} 1) ) (37a) 

- (6q~}2)lkt(-)L~b~) > -  <aq~p)l/~'i ~( )l~,b}l)> (37b) 

62,(2) = (6r 15~(,2)> (37c) 
" j k  

The first and second terms on the rhs of Eq. (37a) cancel because of 
Eq. (29), yielding - (q,~2)l R ' r ( - ) l ~ } l ) ) ,  which equals - tj(q~(~2)lT(+) !~b}l)). 
Also, using the symmetric property of the operator product  RA, the 
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first and third terms on the rhs of Eq.(37a) cancel, yielding 
- t ~ ( ~ 2 ) l t ( + ) l ~ ) ) .  Thus, statement2 is verified. Using identical 
arguments, it is easy to see that the first and third terms and the second 
and fourth terms on the rhs of Eq. (37b) cancel, yielding 3J}1)=0. Thus, 
statement 1 is substantiated. 

Finally, the unknown quantity in the moment equations [Eq. (23)], 
(X~2~ltl+~l~l~), is simply related to the stationary values of the func- 
tionals jj~(~(2)). Expanding Z (2), we get 

(Z~2)lt~+~l~k) = ak(g,~2~lt~+)lG ) + Y~ a/~)~lt~+~l~k) 
j ~ k  

= - a k t  k Stat Jkk(~0 ~2)) -- tk ~ a; Stat J j k ( ~  ~2~) 
j ~ k  

(38) 

Therefore, inserting Eq. (38) into Eq. (23), we obtain a set of moment 
equations for the aj in terms of the stationary values of the functional Jjk(~5(2)): 
{Z-~- f dx 1 [//o(1)~k(1)iZ~ 1, ~k(1)--f dx I ~//o(1)~k(1) /~LE 4k(1 ) 

t k Stat Jkk(tp(2))t a k + 

= f dXl $o(1) ~k(1) Z(1)(Xl, 

- I dxl  ~p ~ ) ~bk(1 )/~LE ~J(1 ) -- tk Stat Jj~(~'2') t aj 
) 

/ : 0 ) - -  ~ {fdXl~o(1)~,(1)iL~l)~j(1) 
j # k  

(39) 

Equations (29), (34), (36), and (39) represent the desired moment- 
variational solution of the ERRE for Z ~ 

We must decide on the appropriate functions in which to expand to 
singlet distortion Z ~1). Much work has been carried out on this choice of 
basis functions when working with equations for the singlet distortions 
(such as the Boltzmann or Enskog equations). We suggest that this work 
also applies to the ERRE. Second, we are faced with the more difficult 
choice of trial functions ~)2). Variational principles are, by their very 
nature, dependent on the development of a physical intuition relating to 
the problem at hand. Some of the insight that we desire is found in the 
kinetic theory treatment of the transition regime. "7,18) We hope to build on 
this intuition by demonstrating a variation solution of the ERRE for the 
overlapping Lorentz gas. 
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4. AN A P P L I C A T I O N :  T H E  O V E R L A P P I N G  L O R E N T Z  GAS 

In this section we apply the formalism developed in Section 3 to the 
calculation of the diffusion constant in the overlapping Lorentz gas. In a 
subsequent paper, the above formalism is applied to the calculation of the 
full VCF for the Lorentz gas. Below, we present the equations specific to 
the 3D LG. However, we will report the numerical results for both the two- 
and three-dimensional systems. 

The overlapping LG represents perhaps the simplest nontrivial "fluid" 
system. It consists of a point particle moving with constant speed Vo 
through a fluid of randomly placed, fixed, overlapping spherical scatters of 
radius R. Important simplifications of the equations of Sections 2 and 3 
result from the simplicity of the overlapping Lorentz model. They are: 

1. All static correlation functions (including all Wj(~ ) except for W~ ), 
k ~> 2) are unity due to the overlapping fluid structure. 

2. The expansion of Z (1) reduces to the single moment 

Z (1) = p(z) vl (40) 

where p(z) is the Laplace transform of the VCF and Vl is the 
velocity of the tagged particle. This is due to the impulsive nature 
of the scattering dynamics and the fact that the initial condition 
on Z (~) for the calculation of D is )(1)(t = 0 ) =  v~. 

3. All operators related to the motion of particles other than the 
tagged particle disappear, due to the fact that all particles but the 
tagged particle are held fixed. 

With the above simplifying features, the moment equations (39) 
reduce to 

(Z+VB)p(z )=  1 + (Vl" IT(+)*IZ (2)) --12 

= 1 + Stat j(;((2)) (41) 

where vB is the Boltzmann friction. The variational functional is 

jr(]((2)) _-- (Z(2). ] i~ALG IZ (2)) -- 2(Z(2). [ .I~T~2 > (42a) 

and 

A L G  = Z -[- V 1 " ~ - -  p2(1) -- T]y ~ (42b) 
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where r is the position of the tagged particle relative to the fixed scatterer 2. 
The operator p2(1) is the Lorentz-Boltzmann operator 

(43) 

v is the friction, p is the singlet density, and v' 1, the precollisional velocity, 
is related to the postcollisional velocity u by 

V'1 = V 1 - -  2(V 1 �9 6 ) d  ( 4 4 )  

where 6 is the unit surface normal at the point of contact. 
Equation (43) requires some clarification. In fact, Eq. (43) is not 

precisely the form of the Lorentz-Boltzmann operator because v and not vB 
(the Boltzmann friction) appears. By defining v as the true fluid friction 
(yet to be determined), we obtain a self-consistent equation [Eq. (60)] for 
the friction. Masters and Keyes (1~ argued that the replacement of vB with 
v in Eq. (43) is reasonable because AL~ describes the motion of the tagged 
particle in the presence of particle 2, and that motion should be the result 
of the true friction, which is different from vB at high densities. This 
replacement of v B with v results in the self-consistent repeated ring equation 
for the diffusion constant. Writing v B instead results in the repeated ring 
expression for the diffusion constant. 

The task at hand is to choose an appropriate trial function. The pair 
function X (2) is the solution of the equation ~Z~LGZ (2)= T~2)Z(1); explicitly, 

z + Vl" ~ -  p2(1) X (2) = T~2 )[-•(2) _~_ Z ( 1 ) ]  (45) 

The lhs of this equation is the Lorentz-Boltzmann kinetic equation and the 
rhs represents boundary conditions (BC) on X (2~. The BC are those of a 
spherical surface source feeding the surrounding fluid. We are confronted 
with a kinetic boundary layer problem (originally suggesting a variational 
treatment). 

We know that far from the boundary, the distribution function Z (2~ 
reduces to a normal form X(N2), ~25) 

3((NZ) = i1 -- v--lVl "~r l  M(r, z ) (46) 

where M(r, z) is an as yet undetermined function of position. Yet, within a 
few mean free paths (mfp) of the boundary there exist complicated boun- 
dary layer solutions, which we denote Z~ ) 

822/51/1-2-18 
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In order to specify the form of the kinetic boundary layer function, we 
propose the following intuitive picture of the kinetic molecular processes 
occurring near the surface source. The spherical boundary acts as a source 
feeding the surrounding fluid (of correlations). The source is the result of 
the change in Z (1) due to the collision between the tagged particle and the 
fixed scatterer, denoted 2. A "particle" just emitted into the fluid contributes 
to the X~ ) part of the distribution function. After undergoing many 
collisions in the fluid, this recently emitted particle will behave (in a 
statistical sense) in a normal, hydrodynamic fashion, thus contributing to 
the normal Z~ ) portion of the distribution function. To specify Z~ ), we 
adopt the view that after a single collision the kinetic "particle" is transfor- 
med from kinetic in nature to normal. This is an extreme description of the 
dynamical processes. However, due to the isotropic scattering cross section 
present in the 3D LG, we believe (and the results demonstrate) that the 
above picture is reasonable. Further, we assume that Z~ ) does not con- 
tribute to the source of ?(~). 

With this model in mind, Z(~) must be the solution of the equation 

0 ] 
z + V ' ~ r + V  =0, Irl > R  (47) 

with BC, obtained from the rhs of Eq. (45) (omitting ;(~), in agreement 
with the discussion of the last paragraph), at Irl = R 

Z~)(r, ~, z) = {~(~)p . . . .  llision __ Z (1) postcollision f - C > 0  
f .  ~ < 0 (48) 

Given Eqs. (40) and (44), the BC can be written 

~(K)(Rr'v'z)={oZ(V'P)rP(z) f.~<0f't~>0 (49) 

The solution to the set of equations (47) and (49) is obtained by the 
method of integration along characteristic paths, u7) The solution is 

X~ ) = -(2p(z)/v 2) exp[ - (v + z)[r - rol/Vo] ro" vl Po~(~ ) (50) 

where g?(Ol) equals unity if the particle travels directly away from the fixed 
scatterer, and is zero otherwise. Also, fo is the outward surface normal at 
the emission point on the surface and Jr-ro] is the rectilinear distance 
traveled by the tagged particle since colliding with the fixed scatterer. 

Given the explicit form of X~ ), we need only to determine M(r, z) in 
the normal part of ;(2). We appeal to the variational principle to determine 
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the optimum form o.f M(r, z). Inserting Z (2) = ~((N 2) + Z~ ) into the variational 
functional J(X (2)) and performing a functional derivative with respect to M, 
we get 

f dr W~ ) 6 M .  I ( - z + D V ~ ) M - v S '  + O ( ~ - V r M ) b ( l r l - R ) l = 0 p  (51) 

where 6M represents the variation of M, and the function S' is defined by 

if S'(r, z ) =  -~-~ df X~)(~, r, z) (52) 

Because Eq. (51) is zero for arbitrary variations 6M, the integrand must 
vanish. Thus, the optimum equation for M(r, z) is 

( - z  + DV2)M = vS', Irl > R (53a) 

P- VrM = 0, Irl = R (53b) 

where D = vZ/3v. Equations (53a) and (53b) represent the hydrodynamic 
diffusion equation with diffuse source term vS' and specular reflecting BC. 
Given the form for Z~ ) and M, as the solution of Eqs. (53a) and (53b), the 
stationary value of J(2) becomes 

Stat J(X,) = vp(z){ [M; S ']  - [S'; S ' ]  } (54) 

where the square bracket [A; B] signifies 

[A; B] = f dr W~)A(r) �9 B(r) (55) 

This form of the stationary value of J is similar in form to that obtained by 
Masters and Keyes. (15'16) 

We present here only the stationary z = 0 calculations. We are faced 
with the problem of solving the stationary diffusion equation 

V~M(r) = (v/D) S'(r), ]r[ > R (56a) 

i .  V~M(r) = 0, ]r[ = R (56b) 

where we drop the z = 0 term in the argument of M and S'. The solution of 
Eqs. (56) can be formulated in terms of the Green's function G(r, r'). The 
function G(r, r') is defined to be the solution of the equation 

V2G(r, r') = -4zt6(r - r') (57) 
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with appropriate boundary conditions. Following standard techniques, we 
can explicitly evaluate G; the result is 

l 

G(r, r ' ) =  ~ ~ g,(r, r') Y~m(f') Yim(?) (58a) 
/ = 0  m = - - l  

with 

4re ~ frl lR2l + 1 ) 
- - r - ( l + l ) ~  " (58b) gz ( r , r ' )=2 l+l[  < + l + 1  < J r ' ( t+1 )  

Here Y/m(2) represents the lth-rank spherical harmonic of the angles 2, r< 
denotes the lesser of r and r', and r> denotes the greater. With G in hand, 
M is expressed as 

M(r)  = ____v__v f dr'  G(r, r') S'(r') (59) 
4reD 

Inserting this expression for M into the Stat J in Eq. (54), and defining 
reduced (starred) quantities, we find for the expression for the friction, 
Eq. (41), 

where 

v* p'v* 
1 + (U,  + (60) 

where 

# m  = (1  - x  2)1/2 (63a) 

a(x,/~) = [1 - x-2(1 _/~2)] 1/2 = ?o' v] (63b) 

b(x ,# )=a(x ,#)#+ {(1-#2)[1-aZ(x,l~)]}1/2=Po.? (63c) 

d* = { [ 1 - b2(x, #)]/(1 - #2) } 1/2 = Ir - rol/R (63d) 

[t~, +] = f~ dy y-2s(y 1)fly dyt s(y,-1)(y, 5+ y, 2/2 ) 

+ f2 dy s(y-1)(y 5 + y-2/2 ) fo dy' s(y' 1) y , -2  (61a) 

[ L g ] = f ~ d y y  4[S(y 1 ) ] 2  (61b) 

The reduced quantities are v*=  Rv/vo and p* = RR 3, and the s(x) function 
is defined by 

s(x) = 2re f~m dl~ exp( -- v'd*) a(x, l~) b(x, ~) (62) 
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The RR friction is obtained by replacing all v* on the rhs of Eq. (60) with 
v* (the reduced Boltzmann friction). We have presented the equation for 
v* which is the consequence of a self-consistent RR theory. (1~ We are able 
to express the friction from a renormalized kinetic theory in terms of rather 
simple integrals (from a computational point of view). 

There are several interesting points concerning the expression for v* in 
Eq. (57). First, in the low-density limit p*, v* --, O, v*/v* becomes 

v*/v* ~- 1 + (p*v*/~v*)[g, ~] (64) 

which, replacing v* with v* on the rhs, represents the low-density form of 
v* obtained from an analysis of the RR equations. (1~ At high densities, the 
term v*2[~, ~-1 dominates [g, ~]. The term v*2[~, ~] is the SCRR correction 
to the Boltzmann expression obtained by projecting ;((2) onto the 
hydrodynamic mode. Hydrodynamic theories of this type are believed to be 
accurate when v*~> 1, and the predictions of Eq. (57) for large v* are 
excellent. 

The required integrals can be evaluated by numerical quadrature. We 
have carried out the calculations for both the two- and three-dimensional 
LG; the explicit derivations above are for the three-dimensional system. 
Before presenting the results, we comment on the difference between the 
two- and three-dimensional Lorentz models. Theoretically, the three- 
dimensional LG is much simpler to handle. The reason for this simplicity is 
that the Lorentz collision operator (43) is of a Bhatnagar-Gross-Krook 
(BGK) (26) form; the scattering cross section is isotropic. This is partly 
responsible for the simplicity of our final results. In two dimensions, 
however, the collision operator contains an anisotropic scattering cross 
section and hence is not of a BGK form. We nevertheless wish to present 
results for the two-dimensional case, where the molecular dynamics 
calculations reach the percolation density; they do not in the three-dimen- 
sional molecular dynamics. For this reason, and so that we may compare 
our results directly with those of Masters and Keyes, who also assumed a 
BGK form for the 2D collision operator, we make a BGK approximation 
to the two-dimensional system. We write 

where v~ 2), the two-dimensional Boltzmann friction, is (8/3)Vo Rp. Once this 
approximation is made, the two- and three-dimensional results appear 
quite similar. 

We first discuss the three-dimensional calculations. In Fig. 2 we plot 
our results for D/D~ within the RR theory and compare with the accurate 
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Fig. 2. The density dependence of the diffusion constant in three dimensions. (+ )  The 
molecular dynamics of Bruin, ( - - )  the RRA of Masters and Keyes, ( - - )  the RRA of 
Eq. (60). 
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Fig. 3. The density dependence of the self-consistent diffusion constant in three dimensions. 
( + ) The MD of Bruin, (- -)  the SCRRA of Masters and Keyes, ( - - )  the SCRRA of Eq. (60). 
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calculations of Masters and Keyes. We see that there is good agreement 
between the two calculations. Also plotted are the M D  results of Bruin. (19) 
The agreement between the M D  and RR results is poor. In order for the 
theory to agree with the MD,  a self-consistent RR (SCRR) theory is 
required. The SCRR results are presented in Fig. 3, along with the self-con- 
sistent results of Masters and Keyes and Bruin's MD. Again, our predic- 
tions are in accord with other results. F rom Figs. 2 and 3, we see that there 
is good agreement between our results and the more accurate M K  results 
at low and high densities, as we would expect from the above discussion. 
The maximum disagreement is in the neighborhood p*,-~ 0.3. 

In Fig. 4 we plot our 2D results for D/DB in the RR theory, along with 
Masters and Keyes' RR results and the 2D M D  calculations of Bruin ~ 
and Alder and Alley. (2~ Again, the RR diffusion constants are in dramatic 
disagreement with MD. Our  calculations are in accord with the M K  
variational RR diffusion constant, though our results are somewhat high. 
Carrying our the self-consistent calculation and plotting all results in 
Fig. 5, we observe that the two-dimensional results are not as accurate as 
the 3D SCRR results of Fig. 3. The 2D SCRR predictions retain the 
qualitative aspect, but have lost the quantitative nature of the 3D results. 
Again, the 2D results are somewhat larger than the M K  results and we 
observe a maximum disagreement with the M D  at intermediate densities. 
We can only speculate that the inaccuracy of our 2D theory as compared 
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Fig. 4. The density dependence of the diffusion constant in two dimensions. ( x ) The MD of 
Alder and Alley, (+) the MD of Bruin, ( --)  the RRA of Masters and Keyes, ( - - )  RRA of 
this work. 
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0.6 " ~ ~  
I) B 

0.4 x ~ x . X  

0.2 

| i �9 t = . 

0 03 0.2 0.3 
p* 

Fig. 5. The density dependence of the self-consistent diffusion constant in two dimensions. 
( x ) The MD of Alder and Alley, ( + ) the MD of Bruin, (--)  the SCRRA of MK, ( - - )  the 
SCRRA of this work. 

to the 3D work may reside in the BGK approximation we utilized. This is 
the only difference between the two- and three-dimensional work. 

In all calculations, our final results for D were high compared to the 
Masters and Keyes' variational calculations. It is tempting to speculate on 
the nature of the stationary value of the functional J(~). While we are able 
to demonstrate that the first variation of J vanishes, we do not know 
whether the stationary value represents a minimum or maximum. Clearly, 
knowledge of the nature of the stationary value of J would prove useful in 
applications of this variational principle. 

Finally, we comment on the value of the critical densities predicted for 
both the two- and three-dimensional systems. The Masters and Keyes' 
predictions for p* are ~ 1 for 2D and 3/2~ for 3D. These results are 
obtained by projecting X (2) onto the hydrodynamic mode in order to for- 
mulate a self-consistent equation for the friction. Because our SC equation 
for v in the v --, oo limit becomes identical with the SC equation obtained 
by projecting onto the hydrodynamic mode, we predict the same critical 
densities for the vanishing of D. 

5, D I S C U S S I O N  A N D  C O N C L U S I O N S  

We have given a hierarchical derivation of the most general kinetic 
equations for tagged molecule motion that incorporate pair dynamic 
correlations, the Enskog repeated ring equations. We believe this to be the 
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first derivation of more complicated RR equations from the BBGKY 
hierarchy. This derivation demonstrates the difficulties encountered when 
naive hierarchy truncations are attempted. We believe that this derivation 
will prove useful in finding other RR equations, for example, modeling 
collective particle behavior in liquids. We anticipate that the inclusion of 
static correlations into a RR theory will prove valuable in predictions of 
nonequilibrium phenomena in condensed phases. 

The utility of these equations can only be fully realized when methods 
for obtaining accurate solutions are available. In this vein, we have 
demonstrated the existence of a variational principle. Utilizing this 
variational principle, we proposed a method yielding solutions to these 
equations, which can be summarized as a combination moment expansion 
for X (1) and a variational solution for ;~(2). The differential VP proposed 
here for the ERRE differs in one important aspect from the integral VP 
utilized by Masters and Keyes in their calculation of the diffusion constant 
for the LG. The differential VP c a n  be demonstrated for the ERRE, the VP 
of Masters and Keyes c a n n o t .  

The variation solution for Z ~2~, as with all variational principles, 
requires the development of an intuition (concerning the nature of pair 
correlations in liquids). Some intuition already exists that a hydrodynamic 
form for )(2) is appropriate at large separations, yet when the molecular 
separation is on the order of a few mean free paths this hydrodynamic form 
is no longer realized. We speculated that the kinetic boundary layer exists 
solely due to the presence of molecules that are freely streaming away from 
the boundary. Once these particles undergo a single collision on the 
surrounding bath, they are immediately transformed into a normal 
(hydrodynamic) form. This simple intuitive picture of the fluid leads to 
reasonable results for the LG. We suggested that part of this success rests 
in the fact that the collision operators in the 3D LG contain isotropic scat- 
tering cross sections which truly randomize velocities in a single collision. 
For other anisotropic scattering cross sections, this intuitive picture of the 
fluid may not be as appropriate, although we suspect that it remains 
qualitative. Perhaps a more complete study of the 2D LG, with anisotropic 
scattering cross section will be instructive in this respect, extending our 
intuition to more realistic and chemically interesting systems. 

Equations (53a) and (53b), derived from the variational principle 
assuming the above picture of the kinetic boundary layer, represent 
a generalized hydrodynamic diffusion equation. This hydrodynamic 
equation, with diffuse kinetic source term, is applicable to the transition 
regime between large and small Knudsen numbers. Schemes exist that 
attempt to incorporate the existence of a finite kinetic boundary layer into 
a hydrodynamic theory, simply modifying the usual Be.  (27'28) Equations 
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(53a) and (53b) represent an alternative approach, where the finite boun- 
dary layer is incorporated into a diffuse source term extending into the 
fluid. 

The ERRE, Eqs. (20) and (21), are extremely complicated yet their 
solution may hold the key to quantitative predictions of tagged molecular 
motion in liquids. We do not wish to imply that, by demonstrating a 
variational principle for these complex equations, we have eliminated the 
problems in predicting tagged particle motion in liquids. We only sugest 
that approaching the problem with this DVP may prove useful. 
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